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a b s t r a c t

The quasi-static three-dimensional problem of elasticity theory for a hyperelastic body under finite defor-
mations, loading by bulk and surface forces, partial fastening and unilateral contact with a rigid punch
and in the presence of time-dependent anisotropic Coulomb friction is considered. The equivalent vari-
ational formulation contains a quasi-variational inequality. After time discretization and application of
the iteration method, the problem arising with “specified” friction is reduced to a non-convex miniumum
functional problem, which is studied by Ball’s scheme. The operator in contact stress space is determined.
It is shown that a threshold level of the coefficient of friction corresponds to each level of loading, below
which there is at least one fixed point of the operator. If the solution at a certain instant of time is known,
the iteration process converges to the solution of the problem at the next, fairly close instant of time.

© 2008 Elsevier Ltd. All rights reserved.

Contact and friction of the crack sides, in the problem of the growth of delamination,1 has a considerable influence on the nature of the
growth of a crack. The problem considered here, which corresponds to the case of thin-film separation, is therefore an urgent one.

There are numerous papers in which the solvability of the contact problem with friction has been investigated. However, in a large
proportion of these, a regularized friction law rather than Coulomb’s law was used, so that the list of key studies is short. The linear
unilateral static problem of elasticity theory with friction, the equivalent variational inequality and the corresponding fixed-point problem
were formulated,2 and the solvability of the problem for a strip was proved using Tikhonov’s fixed-point theorem.3 For Coulomb’s law,
written in terms of the velocities, a converging iteration process has been proposed4 for solving the variational inequality. It was suggested5

that the normal contact stress should be regarded as a distribution, and that the fixed-point principle should be used. As a result of
improvement of the procedure developed earlier,3 the existence of a weak solution of the three-dimensional problem was proved.6,7 A
slightly different technique for obtaining a proof was then developed.8 In a geometrically non-linear quasi-static contact problem with
Coulomb friction, it was suggested that the iteration method should be used to solve the quasi-variational inequality.9

Note that the solvability of the static contact problem with Coulomb friction was proved3–8 within the framework of linear elasticity
theory, and then a much more complex problem (from the viewpoint of elasticity theory) was formulated,9 without proof of solvability.

In the present paper, an attempt is made to investigate the solvability of the problem,9 taking into account the anisotropy of friction.
Using the iteration method,9 it proved possible to change to non-convex minimization of the functional with specified friction. Difficulties
associated with the non-convexity of the function of the specific strain energy were overcome by using the concept of the polyconvexity
of the energy and corresponding mathematical results,10,11 which enabled the complete continuity of the iteration operator for contact
stresses to be proved. Below, estimates of the change in stresses at an iteration step are obtained, and the applicability of Tikhonov’s fixed-
point theorem is substantiated. The novelty of these estimates lies, for certainly, in their specific nature, but the convergence of the iteration
method, the solvability of the problem and the possibility of using this method for calculations are nevertheless proved as a result.

1. Preliminary data and notation

The necessary data are given in well-known treatises.10,12 Summation over dummy indices, direct tensor notation and the products A · B,
A ·· B and A ⊗ B (the dot, double-dot, and diad products) are used. Below, Rn is an n-dimensional Euclidean space with orthonormalized
basis {ik}n

1, R+ = (0, ∞], and
∫

f (x)d� is the Lebesgue integral over the set �.
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Before deformation, the body occupies in R3 the region �, a bounded open connected Lipschitz set with boundary � = ∂�. The vectors
r = xkik and R = Xkik specify the position of a point mass before and after deformation. The function R(x) with a positive Jacobian describes
the deformation, while the vector u = R − r is the displacement; R� = r + �.

On the oriented area nd
∑

with normal N after deformation for any vector b, the folowing expansion holds

For the stress on it, tn = n · T, where T is the first Piola–Kirchhoff tensor, the formula tn = tNN + tT holds.
The following notation is used below

Furthermore, when indicating a specific value of the vector a, use is made of the functions l(a) = a/|a| and f(a) = −(F · l), where F is a
positive-definite friction tensor, and also f(a) = |f|, e(a) = f/|f| and tf(a) = ftN, and �f = (� · e)e is the component of the vector � in the direction
f.

For a hyperelastic body, T = Э�(x, DR), where Э� is a derivative with respect to the tensor DR of the specific strain energy Э (x, DR).

2. Formulation of the problem

At the instant of time t, the boundary � = ∪k� t
k

, where � t
0 is independent of t, mes � t

0 > 0, � t
k

∩ � t
s = ∅, k /= s and k, s = 0, 1, . . ., 4. The

superscript t is omitted where possible. If the deformation R is fairly smooth, then the unit vectors of the outward normal n (Ref. 13, p. 88)
to � and N to R(�) are defined almost everywhere on �.

We will give the equation of motion and the equation of state12

(2.1)

The dot denotes the total time derivative, and � is the mass density.
The simplest configuration of the boundary conditions is as follows:

(2.2)

and S and Pn are the conservative mass and surface forces.
Unilateral contact (non-penetration) of the body and a rigid punch with the boundary �� = {x|�(r) = 0}, where there are the fairly smooth

functions �(r) > 0 outside and �(r) < 0 inside the punch, occurs on a section of the boundary

Thus, on � t
2 , the following conditions must be satisfied

(2.3)

On the set � t
5 = {x| tN < 0, tT /= 0} ⊂ � t

2 there is contact with friction, and, according to the Amonton–Coulomb model of anisotropic
friction,14

(2.4)

Here and below, by default a = u̇T , and f = f (u̇T ) is the coefficient of friction.
Coulomb’s simple law in displacements is acceptable only under simple loading,15 so that in the general case the law (2.4) is necessary.
Under deformation, the contact of sets �3 and �4 occurs, so that

(2.5)

The vector tT on sets �3 and �4 satisfies formulae of the type of (2.4).
The deformation will be unique if the following conditions10 of retention of orientation and internal injectivity are imposed

(2.6)

The classical problem with friction (2.1)–(2.6) (Problem PC) defines the classical solution u. In the quasi-static case, slow processes are
considered, so that the squares of the velocities and the acceleration are negligibly small, the loading parameter plays the role of ‘slow’
time and the presence of time reflects the influence of prehistory.

3. Some notation, spaces and results

Below, for spaces it is assumed that Um is the m-fold direct product of spaces U with norm ||·, Um||, U = U3 and �U = U3, and U1 → (	→)U2 is
the continuous (compact) embedding of U1 in U2. Furthermore, → (→̃) is strong (weak) convergence. And further, |a| = (a * a)1/2, where * = ·
for a scalar or vector and * = ·· for a tensor. In the case of reflexivity or compactness, change to a subsequence, determined by the context,
occurs by default.
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As usual, Ck(E)(C0
k

(E)) is the space of k-fold continuously differentiable functions with compact support in the set E, and Lp = Lp(�),
1 ≤ p < ∞, is the Lebesgue space of functions measurable and summable with power p on �. The Lebesgue integral and measure are used.
The Sobolev space W = W1

p (˝) and Slobodetskii space (of traces) V = W1−1/p
p (� ) are embedded in one another with 1 < p < ∞,16 so that

Here

We will introduce classes of distribution functions17,18

where U is a Banach space, � = [0, T] is the time interval, and ġ satisfies the equation

We will introduce the Banach spaces

Since mes �0 > 0, the norm
∥∥D�; �Lp

∥∥ is equivalent to the norm in W0.19 From known relations18 it follows that

The unit vectors of the outward normal to the boundary �� and the boundary R(�2) are equal to n� = D�/|D�| and N�(X) = −n�(R(x))
respectively. It can be assumed that |D�| ≥ � ∈ R+. If Vi = {� ∈ V|� = 0 outside �i} and � ∈ C2(R3), then from the inclusion R ∈ W it follows that
N� ∈ V2. Since W → C( ¯̋ ) when p > 3, it follows that u� ∈ W ∀(u, �) ∈ W2 (Ref. 10, Section 6.1) and

By embedding theorems,16 from the inclusions u ∈ W and �N ∈ V2 it follows that �N = �NN� ∈ V2 and |�N| ∈ V2.
The following formulae of the tensor calculus are well known:

where the superscript T denotes transposition, and n is the unit vector of the outward normal to the boundary �.12 Using these formulae
and embedding theorems,16,19 the following lemma is proved.

Lemma 3.1. If � is the region defined above, 1 < p < ∞,

then the tensor T has the trace tn = T · n ∈ V′, defined as a distribution by Green’s formula

(3.1)

The function g:� × Rm → R possesses a Carathéodory property20,21 (which is denoted as g ∈ CAR) if the function g(x, ·) is continuous
almost everywhere in �, while g(·, �) is measurable ∀� ∈ Rm. The function h:u(x) ∈ S → hu(x) = g(x, u(x)) ∈ R, where S is the set of measurable
functions from � in Rm, is the Nemytskii operator.20 If

then h:u ∈ (Lp)m → hu ∈ Lr is a continuous20,21 and even a bounded operator,21 i.e., it converts any bounded set into a bounded one.
For the functions Э(x, DR(x)) and T(u), the following two lemmas hold.

Lemma 3.2. The function Э(x, D(r(x) + u(x))) ∈ L1 if

(3.2)

Lemma 3.3. If condition (3.2) is satisfied and q = p/(p = 1), then T(u) ∈ �Lq.

Proof. Generally speaking,
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according to Lagrange’s formula, where � ∈ (0, t) ⊂ R+. According to Lemma 3.2, the left-hand side of this equation belongs to L1, and
consequently so does the right-hand side. The right-hand side converges to g(u, �) = Э�(x, DR) D�T almost everywhere in � with t → 0.
By Fatou’s lemma, g ∈ L1 ∀(u, �) ∈ W2, so that the operator g(u, �) from W2 in L1 exists and is continuous and bounded, with the bounded
norm

4. Variational formulation of the problem

If � ∈ C2(�, W), then � ∈ C(�). We further assume that

Then

From the non-penetration condition �(r(x)) + �(x, �) ≥ 0 for � = t, s, where s → t, it follows that 	̇N ≤ 0 on � t
6 . As the set C2(�, U) is dense in

W2(�, U), it is possible to introduce the sets

We will introduce the scalar products ]·, ·[, 〈·, ·〉 and [·, ·] into L2(�), L2(�5) and L2(�6); (a, b) =
∫

a ∗ bd˝, the set �9 = �2 ∪ �3 ∪ �4 and
the variation of the displacement �u = � − u, where � ∈ K. assume that

(4.1)

We multiply the first equation of system (2.1) by ıu̇ and integrate with respect to � using relation (3.1). We obtain

(4.2)

We will prove that

If |tT| < |tf| and u̇T = 0, then

If, however, tT = |tN|f, then

since the tensor F is positive-definite, and therefore

We will define

In the quasi-stationary case it is possible to drop �ü. Using expansions for tn and �u̇, relations (2.2) and (2.5) and the conditions that H ≥ 0
on �5 and tN�u̇N ≥ 0 on �6, from Eq. (4.2) we obtain

(4.3)

Note that, in the isotropic case,



592 G.A. Kosushkin / Journal of Applied Mathematics and Mechanics 72 (2008) 588–596

It is natural to determine the weak solution u(x, t) on the basis of inequality (4.3). Then

according to Lemma 3.3, and tn and tN are distributions on the boundary, and here tN ≤ 0 on �6. As a result, taking into account the second
equation of system (2.1) and Eq. (3.1), we have

(4.4)

If �N ∈ V6, then �N ∈ V6 and is extended continuously in W. Relation (3.1), the Hölder inequality and the embedding theorems indicate
that tN ∈ V′

6. Since
∣∣�̇

∣∣ ∈ V and � t
5 ⊂ � t

6 , it follows that tN ∈ V′
5 and ftN ∈ V′

5, and the functional
〈

tf,
∣∣�̇f

∣∣ −
∣∣u̇f

∣∣〉 is determined. The weak
problem (PW) means finding u(x, t) ∈ K from relations (4.3) and (4.4). The equivalence of auxiliary problems when certain additional
conditions are observed is proved as usual,6,8,9,22 and this can be dropped. If conditions (3.2) and (4.1) are satisfied, then Problem PC is
equivalent to Problem PW.

Following Kravchuk,9 we expand the left-hand side of inequality (4.3) for the instant of time s in terms of dt ≤ dt* with fairly small dt*.
We will introduce the functions

and drop powers below dt2. As a result, we obtain

(4.5)

Here

Suppose conditions (3.2) and (4.1) are satisfied. We will formulate Problem PWt: it is required to find ũ from relations (4.5) and (4.4).
Problems PWt and PW are equivalent if dt is sufficiently small. Applying the iteration method4,9 to Problem PWt, we obtain Problem PW(k)

with “specified friction” (static, if ut
f is removed): it is required to find ũ(k+1) ∈ K̃ and t(k+1)

N with w = �̃ − ũ(k+1) ∀�̃ ∈ K̃ and a = ũ(k) − ut from
the system

(4.6)

(4.7)

(4.8)

5. The problem for specified friction

For p > 3, q = p/2 and r = p/3, we will introduce the spaces

and operators

where cofH = (detH)H−T. Well-known results10 give the following.

Lemma 5.1. The operator A:W → G is weakly and strongly continuous, closed and bounded. Then

and consequently

where P2 and P3 are polynomials of degree 2 and 3 respectively, positive on R+, and the norms are taken for 
 and 
̃ in Lr, for � and �̃ in �Lq and
for � in W0.

Lemma 5.2. The sets K7,8, K
, Kt and K̃ are weakly closed.

Proof. Suppose �̃n ∈ K̃ and �̃n→̃�̃0 in W0. Since �n(x, 	)→̃�0(x, 	) with � = t, s and W 	→ C(�), it follows that �n → �0 in C(�). This means
that 	0,N(s) ≤ 	0,N(t) on �6, �0 ∈ K7,8 and �(r + �0) ≥ 0 on � �

6 . Then, with the usual reasoning (Ref. 10, Sections 7.7 and 7.9), we conclude
that �0 ∈ K
. Consequently, �0 ∈ K� and �̃0 ∈ K̃.



G.A. Kosushkin / Journal of Applied Mathematics and Mechanics 72 (2008) 588–596 593

Lemma 5.3. If ũ ∈ K̃ and �̃ ∈ K̃, then in the set K̃ there will be the sequence {ũ(n)} such that ũ(n) − ũ → 0 and n(ũ(n) − ũ) → �̃ − ũ in W as
n → ∞.

Proof. Let

and here the smooth function g is chosen such that (−wN) ≥ � ∈ R+ and ġ = 0 in �. Obviously, u(n) − u → 0 and n(u(n) − u) → � − u in W,
and W → C(�). Since

where the function d(n) > 0 when n > n0 = c2
3(�c2)−2, it follows that

We will use Minkowski’s inequality for the determinants

Almost everywhere in � we have 
(u) > 0 and 
(�) > 0, so that a number n1 will be found such that 
(u(n)) > 0 almost everywhere in � with
n > n1.Since

it follows that

We use Hölder’s inequalities and Lemma 5.1. Then

where 
 ≥ 0 is a bounded function and ||·|| = ||·; W0||. For any � > 0, a number n2 will be found such that

Since W 	→ C(�̄) ⇒ u(n) → u in C( ¯̋ ), a number n3 ≥ n2 will be found (Ref. 10, Section 7.9) such that

Since the quantity � is arbitrary,

for fairly large n. As a result, u(n) ∈ K
 and u(n) ∈ K�. The fact that ũ and �̃ ∈ K̃ indicates that uN(s) ≤ uN(t) and �N(s) ≤ �N(t) on � t
6 . Hence,

taking into account that gN(s) = gN(t), we obtain u(n)
N (s) ≤ u(n)

N (t) on � t
6 and u(n) ∈ K̃.

The set K̃ is non-convex, and the change from Problem PW(k) to the problem of minimizing the functional is difficult. We will introduce
as usual17 the set E(K̃, ũ) = {w̃ ∈ W0}, for each element of which elements ũ(n) ∈ K̃ and 
n ∈ R+ exist such that ũ(n) → ũ and 
n(ũ(n) − ũ) → w̃
in W0. Since, according to Lemma 5.3, from the inclusion (ũ, �̃) ∈ K̃2 it follows that �̃ − ũ ∈ E, the following theorem is applicable, the proof
of which, (similar to the case J2 = 017) is omitted.

Theorem 5.1. If ũ ∈ K̃, and J(ũ) ≤ J(�̃) ∀�̃ ∈ K̃, where J = J1 + J2, J1 is differentiated and J2 is a continuous functional on K̃, then

We will formulate the Problem PM:

Minimization of the functional J is problematical, since the function Э(x, H) is not convex with respect to H. Ball10,11 introduced a weaker
condition of polyconvexity. Suppose M0 ⊂ M = {H ∈ R3×3}, where H is a matrix and CoM̂0 is the convex shell of the set
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The function Э(x, ·): M0 → R is polyconvex if a convex function Э̃(x, ·) : CoM̂0 → R exists such that

Theorem 5.2. Suppose conditions (3.2) and (4.1) are satisfied, and, furthermore, that:

(1) � ∈ C2(R3);
(2) the function Э(x, ·) : CoD(K̃) → R is poly-convex according to Ball;
(3) the condition of coercivity is satisfied: constants � and �, � > 0 exist, such that

(5.1)

(4) Э(x, H) → +∞ almost everywhere in � as detH → +0;
(5) inf{ J(�̃)

∣∣ �̃ ∈ K̃} < +∞;

(6) J2(�̃) ≤ a‖ t(k)
f ; V ′

6

∥∥ (|||�̃|; V6|| + b), where �̃ ∈ K̃, a, b ∈ R+.

A solution of Problem PM then exists, and this problem is equivalent to Problem PW(k).

Proof. We will use Ball’s scheme for the problem without friction.10,11 If �̃ ∈ W0, then Ã�̃ ∈ B. Taking into account the last condition of the
theorem, the continuity and boundedness of the operators Э(x, ·) : �Lp → L1 and Э̃(x, ·) : B → L1 and also the inequality

we integrate inequality (5.1). As a result, we obtain

(5.2)

Suppose {�̃m} ∈ K̃ and J(�̃m) → inf{ J(�̃)
∣∣ �̃ ∈ K̃} as m → ∞. On account of condition 5, inequality (5.2), the reflexivity of space B and

Lemma 5.1, Ã�̃n→̃Ã�̃0 exists in B. Then, �̃n→̃�̃0, and, when � = t, s, there will be �̃n(x, �)→̃�̃0(x, �) in W0. Since W 	→ C(�), it follows that
�n(x, �) → �0(x, �) uniformly on � �

6 and �0. This means that

According to Lemma 5.2, �0 ∈ K
. Consequently, �0 ∈ K� and �̃0 ∈ K̃. With the usual reasoning (Ref. 10, Section 7.7), we find that J(�̃0) =
inf{ J(�̃)

∣∣ �̃ ∈ K̃}. The theorem is proved.
Thus, for Problem PM we have

Hence, t(k+1)
f

∈ V ′
6, and in the topology V′

6 the operator Q : t(k)
f

→ t(k+1)
f

is determined. It is not difficult to prove that, on � t
6 , from t(k)

N ≤ 0

it follows that t(k+1)
N ≤ 0.

6. Application of the fixed-point principle

It follows from Section 5 that the following problem PW(k) is solvable: it is required to find ũ(k+1) ∈ K̃ from relations (4.6) to (4.8).

Lemma 6.1. The operator Q is weakly continuous in the topology V′
6.

Proof. Suppose

and ũm and ũ are the solutions of problem PM for tf = 
m and 
 respectively. Then

From this we conclude that

(6.1)

(6.2)

If 
m→̃
 in V′
6, then, using the boundedness of the sequence (||
m||), the reflexivity of the space B, relations (6.2) and (5.2) and the

closedness of the operator A, we will single out Ãũm→̃Ã�̃0. Since W 	→ C(�6), it follows that ũm → �̃0 in C(�6). This fact, inequality (6.1)
and the fact that 
m→̃
 give
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On account of the polyconvexity of the function Э and Mazur’s and Fatou’s lemmas, we have

(Ref. 10, Section 7.7), so that

The contradiction is eliminated if �̃0 = ũ and ũm→̃ũ in the space W.
From the results of Section 3 it follows that the operator T : W → �Lq is continuous and bounded. Since ũm→̃ũ in W and the sequence

{T(ũm)} is bounded, it is possible to isolate T(ũm)→̃T∗ in �Lq, where q = p/(p − 1). In inequality (4.6) defining ũ we will assume that �̃ = ũ ± �,
and in equality (4.6) defining ũm we will assume that �̃ = ũm ± �, where � ∈ W0 and � = 0 on �6, and we will take the limit as m → ∞. As
a result we have

i.e., T∗ = T(ũ), and the operator T is weakly continuous. Since t(k+1)
N is determined from inequality (4.8) in terms of T(k+1), the operator Q is

weakly continuous.
Putting �̃ = ũ(k+1) ± � in Eq. (4.6), where � ∈ W0 and �N = 0 on �, we can to derive the inequality

Hence

Here, ||�S||, ||Pn|| and ||t(k)
f

|| are norms in the spaces W′, V′
1 and V′

6. Since ||Dv; �Lp|| is the norm in W0, from equality (4.8) we have

so that, taking the preceding inequality into account, we obtain

When c1||f|| < 1 a constant r > 0 exists such that the mapping of Q transfers to itself the set Br ∩ C∗−, where Br is a sphere of radius r, and
C*− is the cone of non-positive distributions in space V′

6. The closed sphere Br is convex and compact in weak topology, since the space V′
6

is reflexive.
We will use the following theorem of Tikhonov.6,23

Theorem 6.1. Suppose Q̃ : ˚ ⊂ U → ˚ is a continuous mapping, where 
 is a non-empty, compact, convex set in locally convex space U. Then,
the mapping of Q̃ has a fixed point in the set 
.

As a result, the operator Q has at least one fixed point in space V′
6. Taking into account the proved equivalence of the auxiliary problems,

in particular Problems PWt and PW, we can consider the existence of a weak solution of the quasi-stationary problem to be proved.

Theorem 6.2. Suppose the conditions of Theorem 5.2 are satisfied. Then, a constant f* > 0 is found such that, when ||f|| < f*, the quasi-static
problem has at least one weak solution.
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